lunes, 4 de junio de 2012

BIENVENIDA


Bienvenidos a este blog donde podras encontrar algunos temas de biologia, donde encontratras una informacion muy completa; además encontraras alguna imagens ilustrativas y algunos videos que te ayudaran en tu proceso de investigación; Estos son los temas a tratar en este blog:
  1. CALENTAMIENTO GLOBAL
  2. TAXONOMIA
  3. REPRODUCCIÓN CELULAR
  4. GENOMA HUMANO
  5. ADN

ADN


El ácido desoxirribonucleico, frecuentemente abreviado como ADN(y también DNA, del inglés deoxyribonucleic acid), es un tipo de ácido nucleico, una macromolécula que forma parte de todas las células. Contiene la 
información genética usada en el desarrollo y el funcionamiento de los organismos vivos conocidos y de algunos virus, y es responsable de su transmisión hereditaria.
Desde el punto de vista químico, el ADN es un polímero de nucleótidos, es decir, un polinucleótido. Un polímero es un compuesto formado por muchas unidades simples conectadas entre sí, como si fuera un largo tren formado por vagones. En el ADN, cada vagón es un nucleótido, y cada nucleótido, a su vez, está formado por un azúcar (la desoxirribosa), una base nitrogenada (que puede ser adenina→A, timina→T, citosina→C o guanina→G) y un grupo fosfatoque actúa como enganche de cada vagón con el siguiente. Lo que distingue a un vagón (nucleótido) de otro es, entonces, la base nitrogenada, y por ello la secuencia del ADN se especifica nombrando sólo la secuencia de sus bases. La disposición secuencial de estas cuatro bases a lo largo de la cadena (el ordenamiento de los cuatro tipos de vagones a lo largo de todo el tren) es la que codifica la información genética: por ejemplo, una secuencia de ADN puede serATGCTAGATCGC... En los organismos vivos, el ADN se presenta como una doble cadena de nucleótidos, en la que las dos hebras están unidas entre sí por unas conexiones denominadas puentes de hidrógeno.
Para que la información que contiene el ADN pueda ser utilizada por la maquinaria celular, debe copiarse en primer lugar en unostrenes de nucleótidos, más cortos y con unas unidades diferentes, llamados ARN. Las moléculas de ARN se copian exactamente del ADN mediante un proceso denominado transcripción. Una vez procesadas en el núcleo celular, las moléculas de ARN pueden salir al citoplasma para su utilización posterior. La información contenida en el ARN se interpreta usando el código genético, que especifica la secuencia de los aminoácidos de las proteínas, según una correspondencia de un triplete de nucleótidos (codón) para cada aminoácido. Esto es, la información genética (esencialmente: qué proteínas se van a producir en cada momento del ciclo de vida de una célula) se halla codificada en las secuencias de nucleótidos del ADN y debe traducirse para poder funcionar. Tal traducción se realiza usando el código genético a modo de diccionario. El diccionario "secuencia de nucleótido-secuencia de aminoácidos" permite el ensamblado de largas cadenas de aminoácidos (las proteínas) en el citoplasma de la célula. Por ejemplo, en el caso de la secuencia de ADN indicada antes (ATGCTAGATCGC...), la ARN polimerasa utilizaría como molde la cadena complementaria de dicha secuencia de ADN (que sería TAC-GAT-CTA-GCG-...) para transcribir una molécula de ARNm que se leería AUG-CUA-GAU-CGC-... ; el ARNm resultante, utilizando el código genético, se traduciría como la secuencia de aminoácidos metionina-leucina-ácido aspártico-arginina-...
Las secuencias de ADN que constituyen la unidad fundamental, física y funcional de la herencia se denominan genes. Cada gen contiene una parte que se transcribe a ARN y otra que se encarga de definir cuándo y dónde deben expresarse. La información contenida en los genes (genética) se emplea para generar ARN y proteínas, que son los componentes básicos de las células, los "ladrillos" que se utilizan para la construcción de los orgánulos u organelos celulares, entre otras funciones.
Dentro de las células, el ADN está organizado en estructuras llamadas cromosomas que, durante el ciclo celular, se duplican antes de que la célula se divida. Los organismos eucariotas (por ejemplo, animales, plantas, y hongos) almacenan la mayor parte de su ADN dentro del núcleo celular y una mínima parte en elementos celulares llamados mitocondrias, y en los plastos y los centros organizadores de microtúbulos o centríolos, en caso de tenerlos; los organismos procariotas (bacterias y arqueas) lo almacenan en el citoplasma de la célula, y, por último, los virus ADN lo hacen en el interior de la cápsida de naturaleza proteica. Existen multitud de proteínas, como por ejemplo las histonas y los factores de transcripción, que se unen al ADN dotándolo de una estructura tridimensional determinada y regulando su expresión. Los factores de transcripción reconocen secuencias reguladoras del ADN y especifican la pauta de transcripción de los genes. El material genético completo de una dotación cromosómica se denomina genoma y, con pequeñas variaciones, es característico de cada especie.


Estructura

El ADN es una molecula bicatenaria, es decir, está formada por dos cadenas dispuestas de forma antiparalela y con las bases nitrogenadas enfrentadas. En su estructura tridimensional, se distinguen distintos niveles:

1.   Estructura primaria:

§  Secuencia de nucleotidos encadenados. Es en estas cadenas donde se encuentra la información genética, y dado que el esqueleto es el mismo para todos, la diferencia de la información radica en la distinta secuencia de bases nitrogenadas. Esta secuencia presenta un código, que determina una información u otra, según el orden de las bases.

2.   Estructura secundaria:

§  Es una estructura en doble hélice . Permite explicar el almacenamiento de la información genética y el mecanismo de duplicación del ADN. Fue postulada por Watson y Crick, basándose en la difracción de rayos X que habían realizado Franklin y Wilkins, y en la equivalencia de bases de Chargaff, según la cual la suma de adeninas más guaninas es igual a la suma de timinas más citosinas.
§  Es una cadena doble, dextrógira o levógira, según el tipo de ADN. Ambas cadenas son complementarias, pues la adenina y la guanina de una cadena se unen, respectivamente, a la timina y la citosina de la otra. Ambas cadenas son antiparalelas, pues el extremo 3´ de una se enfrenta al extremo 5´ de la homóloga.
§  Existen tres modelos de ADN. El ADN de tipo B es el más abundante y es el que tiene la estructura descrita por Watson y Crick.

3.   Estructura terciaria:

§  Se refiere a cómo se almacena el ADN en un espacio reducido, para formar los cromosomas. Varía según se trate de organismos procariotas o eucariotas:
2.    En procariotas el ADN se pliega como una súper-hélice, generalmente en forma circular y asociada a una pequeña cantidad de proteínas. Lo mismo ocurre en orgánulos celulares como las mitocondrias y en los cloroplastos.
3.    En eucariotas, dado que la cantidad de ADN de cada cromosoma es muy grande, el empaquetamiento ha de ser más complejo y compacto; para ello se necesita la presencia de proteínas, como las histonas y otras proteínas de naturaleza no histónica (en los espermatozoides estas proteínas son las protaminas).

Estructuras en doble hélice



De izquierda a derecha, las estructuras de ADN A, B y Z.
El ADN existe en muchas conformaciones. Sin embargo, en organismos vivos sólo se han observado las conformaciones ADN-A, ADN-B y ADN-Z. La conformación que adopta el ADN depende de su secuencia, la cantidad y dirección de súper enrollamiento que presenta, la presencia de modificaciones químicas en las bases y las condiciones de la solución, tales como la concentración de iones de metales y poliaminas. De las tres conformaciones, la forma "B" es la más común en las condiciones existentes en las células Las dos dobles hélices alternativas del ADN difieren en su geometría y dimensiones.
La forma "A" es una espiral que gira hacia la derecha, más amplia que la "B", con una hendidura menor superficial y más amplia, y una hendidura mayor más estrecha y profunda. La forma "A" ocurre en condiciones no fisiológicas en formas deshidratadas de ADN, mientras que en la célula puede producirse en apareamientos híbridos de hebras ADN-ARN, además de en complejos enzima-ADN.
Los segmentos de ADN en los que las bases han sido modificadas por metilación pueden sufrir cambios conformacionales mayores y adoptar la forma "Z". En este caso, las hebras giran alrededor del eje de la hélice en una espiral que gira a mano izquierda, lo opuesto a la forma "B" más frecuente. Estas estructuras poco frecuentes pueden ser reconocidas por proteínas específicas que se unen a ADN-Z y posiblemente estén implicadas en la regulación de la transcripción.

Estructuras en cuádruplex



Estructura de un ADN en cuádruplex formada por repeticiones en los telómeros. La conformación de la estructura de soporte del ADN difiere significativamente de la típica estructura en hélice
En los extremos de los cromosomas lineales existen regiones especializadas de ADN denominadas telómeros. La función principal de estas regiones es permitir a la célula replicar los extremos cromosómicos utilizando la enzima telomerasa, puesto que las enzimas que replican el resto del ADN no pueden copiar los extremos 3' de los cromosomas. Estas terminaciones cromosómicas especializadas también protegen los extremos del ADN, y evitan que los sistemas de reparación del ADN en la célula los procesen como ADN dañado que debe ser corregido. En las células humanas, los telómeros son largas zonas de ADN de hebra sencilla que contienen algunos miles de repeticiones de una única secuencia TTAGGG.

Estas secuencias ricas en guanina pueden estabilizar los extremos cromosómicos mediante la formación de estructuras de juegos apilados de unidades de cuatro bases, en lugar de los pares de bases encontrados normalmente en otras estructuras de ADN. En este caso, cuatro bases guanina forman unidades con superficie plana que se apilan una sobre otra, para formar una estructura cuádruple-G estable. Estas estructuras se estabilizan formando puentes de hidrógeno entre los extremos de las bases y la quelatación de un metal iónico en el centro de cada unidad de cuatro bases. También se pueden formar otras estructuras, con el juego central de cuatro bases procedente, o bien de una hebra sencilla plegada alrededor de las bases, o bien de varias hebras paralelas diferentes, de forma que cada una contribuye con una base a la estructura central.
Además de estas estructuras apiladas, los telómeros también forman largas estructuras en lazo, denominadas lazos teloméricos o lazos-T (T-loops en inglés). En este caso, las hebras simples de ADN se enroscan sobre sí mismas en un amplio círculo estabilizado por proteínas que se unen a telómeros. En el extremo del lazo T, el ADN telomérico de hebra sencilla se sujeta a una región de ADN de doble hebra porque la hebra de ADN telomérico altera la doble hélice y se aparea a una de las dos hebras. Esta estructura de triple hebra se denomina lazo de desplazamiento o lazo D (D-loop).

Funciones biológicas

Las funciones biológicas del ADN incluyen el almacenamiento de información (genes y genoma), la codificación de proteínas (transcripción y traducción) y su autoduplicación (replicación del ADN) para asegurar la transmisión de la información a las células hijas durante la división celular.

Genes y genoma

El ADN se puede considerar como un almacén cuyo contenido es la información (mensaje) necesaria para construir y sostener el organismo en el que reside, la cual se transmite de generación en generación. El conjunto de información que cumple esta función en un organismo dado se denomina genoma, y el ADN que lo constituye, ADN genómico.
El ADN genómico (que se organiza en moléculas de cromatina que a su vez se ensamblan en cromosomas) se encuentra en el núcleo celular de los eucariotas, además de pequeñas cantidades en las mitocondrias y cloroplastos. En procariotas, el ADN se encuentra en un cuerpo de forma irregular denominado nucleoide.

El ADN codificante



ARN polimerasa T7 (azul) produciendo un ARNm (verde) a partir de un molde de ADN (naranja).
La información genética de un genoma está contenida en los genes, y al conjunto de toda la información que corresponde a un organismo se le denomina su genotipo. Un gen es una unidad de herencia y es una región de ADN que influye en una característica particular de un organismo (como el color de los ojos, por ejemplo). Los genes contienen un "marco de lectura abierto" (open reading frame) que puede transcribirse, además de secuencias reguladoras, tales como promotores y enhancers, que controlan la transcripción del marco de lectura abierto.
Desde este punto de vista, las obreras de este mecanismo son las proteínas. Estas pueden ser estructurales, como las proteínas de los músculos, cartílagos, pelo, etc., o funcionales, como la hemoglobina o las innumerables enzimas del organismo. La función principal de la herencia es la especificación de las proteínas, siendo el ADN una especie de plano o receta para producirlas. La mayor parte de las veces la modificación del ADN provocará una disfunción proteica que dará lugar a la aparición de alguna enfermedad. Pero en determinadas ocasiones, las modificaciones podrán provocar cambios beneficiosos que darán lugar a individuos mejor adaptados a su entorno.
Las aproximadamente treinta mil proteínas diferentes en el cuerpo humano están constituidas por veinte aminoácidos diferentes, y una molécula de ADN debe especificar la secuencia en que se unen dichos aminoácidos.
En el proceso de elaborar una proteína, el ADN de un gen se lee y se transcribe a ARN. Este ARN sirve como mensajero entre el ADN y la maquinaria que elaborará las proteínas y por eso recibe el nombre de ARN mensajero o ARNm. El ARN mensajero sirve de molde a la maquinaria que elabora las proteínas, para que ensamble los aminoácidos en el orden preciso para armar la proteína.
El dogma central de la biología molecular establecía que el flujo de actividad y de información era: ADN → ARN → proteína. No obstante, en la actualidad ha quedado demostrado que este "dogma" debe ser ampliado, pues se han encontrado otros flujos de información: en algunos organismos (virus de ARN) la información fluye de ARN a ADN; este proceso se conoce como "transcripción inversa o reversa", también llamada "retrotranscripción". Además, se sabe que existen secuencias de ADN que se transcriben a ARN y son funcionales como tales, sin llegar a traducirse nunca a proteína: son los ARN no codificantes, como es el caso de los ARN interferentes.






El ADN no codificante ("ADN basura")

El ADN del genoma de un organismo puede dividirse conceptualmente en dos: el que codifica las proteínas (los genes) y el que no codifica. En muchas especies, sólo una pequeña fracción del genoma codifica proteínas. Por ejemplo, sólo alrededor del 1,5% del genoma humano consiste en exones que codifican proteínas (20.000 a 25.000 genes), mientras que más del 90% consiste en ADN no codificante.
El ADN no codificante (también denominado ADN basura o junk DNA) corresponde a secuencias del genoma que no generan una proteína (procedentes de transposiciones, duplicaciones, translocaciones y recombinaciones de virus, etc.), incluyendo los intrones. Hasta hace poco tiempo se pensaba que el ADN no codificante no tenía utilidad alguna, pero estudios recientes indican que eso es inexacto. Entre otras funciones, se postula que el llamado "ADN basura" regula la expresión diferencial de los genes. Por ejemplo, algunas secuencias tienen afinidad hacia proteínas especiales que tienen la capacidad de unirse al ADN (como los homeodominios, los complejos receptores de hormonas esteroides, etc.), con un papel importante en el control de los mecanismos de trascripción y replicación. Estas secuencias se llaman frecuentemente "secuencias reguladoras", y los investigadores suponen que sólo se ha identificado una pequeña fracción de las que realmente existen. La presencia de tanto ADN no codificante en genomas eucarióticos y las diferencias en tamaño del genoma entre especies representan un misterio que es conocido como el "enigma del valor de C".Recientemente, un grupo de investigadores de la Universidad de Yale ha descubierto una secuencia de ADN no codificante que sería la responsable de que los seres humanos hayan desarrollado la capacidad de agarrar y/o manipular objetos o herramientas.
Por otro lado, algunas secuencias de ADN desempeñan un papel estructural en los cromosomas: los telómeros y centrómeros contienen pocos o ningún gen codificante de proteínas, pero son importantes para estabilizar la estructura de los cromosomas. Algunos genes no codifican proteínas, pero sí se transcriben en ARN: ARN ribosómico, ARN de transferencia y ARN de interferencia(ARNi, que son ARN que bloquean la expresión de genes específicos). La estructura de intrones y exones de algunos genes (como los de inmunoglobulinas y protocadherinas) son importantes por permitir los cortes y empalmes alternativos del pre-ARN mensajero que hacen posible la síntesis de diferentes proteínas a partir de un mismo gen (sin esta capacidad no existiría el sistema inmune, por ejemplo). Algunas secuencias de ADN no codificante representan pseudogenes que tienen valor evolutivo, ya que permiten la creación de nuevos genes con nuevas funciones. Otros ADN no codificantes proceden de la duplicación de pequeñas regiones del ADN; esto tiene mucha utilidad, ya que el rastreo de estas secuencias repetitivas permite estudios de filogenia.

Transcripción y traducción

En un gen, la secuencia de nucleótidos a lo largo de una hebra de ADN se transcribe a un ARN mensajero (ARNm) y esta secuencia a su vez se traduce a una proteína que un organismo es capaz de sintetizar o "expresar" en uno o varios momentos de su vida, usando la información de dicha secuencia.
La relación entre la secuencia de nucleótidos y la secuencia de aminoácidos de la proteína viene determinada por el código genético, que se utiliza durante el proceso de traducción o síntesis de proteínas. La unidad codificadora del código genético es un grupo de tres nucleótidos (triplete), representado por las tres letras iniciales de las bases nitrogenadas (por ej., ACT, CAG, TTT). Los tripletes del ADN se transcriben en sus bases complementarias en el ARN mensajero, y en este caso los tripletes se denominan codones (para el ejemplo anterior, UGA, GUC, AAA). En el ribosoma cada codón del ARN mensajero interacciona con una molécula de ARN de transferencia (ARNt o tRNA) que contenga el triplete complementario, denominado anticodón. Cada ARNt porta el aminoácido correspondiente al codón de acuerdo con el código genético, de modo que el ribosoma va uniendo los aminoácidos para formar una nueva proteína de acuerdo con las "instrucciones" de la secuencia del ARNm. Existen 64 codones posibles, por lo cual corresponde más de uno para cada aminoácido (por esta duplicidad de codones se dice que el código genético es un código degenerado: no es unívoco); algunos codones indican la terminación de la síntesis, el fin de la secuencia codificante; estos codones de terminación ocodones de parada son UAA, UGA y UAG (en inglés, nonsense codons o stop codons)

Replicación del ADN



Esquema representativo de la replicación del ADN.
La replicación del ADN es el proceso por el cual se obtienen copias o réplicas idénticas de una molécula de ADN. La replicación es fundamental para la transferencia de la información genética de una generación a la siguiente y, por ende, es la base de la herencia. El mecanismo consiste esencialmente en la separación de las dos hebras de la doble hélice, las cuales sirven de molde para la posterior síntesis de cadenas complementarias a cada una de ellas, que llevará por nombre ARNm. El resultado final son dos moléculas idénticas a la original. Este tipo de replicación se denomina semiconservativa debido a que cada una de las dos moléculas resultantes de la duplicación presenta una cadena procedente de la molécula "madre" y otra recién sintetizada.






REPRODUCCIÓN CELULAR



Reproducción Celular
La célula cuando se reproduce da lugar a nuevas células. Tal y como ya sabemos existe organismos unicelulares y pluricelulares, estos últimos forman parte de los diferentes tejidos que tienen la función de sustituir a una célula muerta o ayudarla a crecer. Para la reproducción celular se necesita dos procesos:
  • División del núcleo
  • División de citoplasma(citocinesis)
Dependiendo de los distintos tipos de células podemos diferenciar dos clases de reproducciones:
  • Mitosis:es la que se produce en todos los organismos menos los sexuales,también llamadas células somáticas.
  •  
  • Meiosis: se reproduce en las células sexuales o también llamados gametos.



LA MITOSIS


La mitosis es un proceso de división celular en la que las dos células resultantes obtienen exactamente la misma información genética de la célula progenitora. Se realiza en las células somáticas cuando los organismos necesitan crecer o reparar tejidos dañados.Para poder realizar la división celular es necesario realizar cuatro fases. Para que se puedan realizar estas cuatro fases es necesario una preparación conocida como interfase donde la célula posee un centriolo (orgánulo), donde el ADN se duplica para las fases posteriores.Es ahora cuando comienza la mitosis:




PROFASE: fase en la que se condensan los cromosomas (ya que la cromatina estaba suelta por el núcleo) y empiezan a unirse.Posteriormente se duplica el centriolo y la membrana central se desintegra, dirigiéndose cadacentriolo a los polos opuestos.



METAFASE: se crea el huso mitótico constituido de fibras protéicas que une a los doscentriolos. Los cromosomas formados constituyen el plano ecuatorial, situado en medio de la célula en línea recta colgado del huso mitótico.


ANAFASE: las cromátidas de cada cromosoma se separan y se mueven hacia los polos opuestos .





TELOFASE: los cromosomas están en los polos opuestos y son cada vez más difusos. La membrana núclear se vuelve a forma. El citoplasma se divide.
CITOCINESIS: por último la célula madre se divide en dos células hijas. Así términa la mitosis.

La meiosis

Cuando se produce la fecundación se unen los cromosomasPATERNOS con los MATERNOS. Ambos poseen en total 46cromosomas (23 cromosomas y sus copias). Si uniéramos estos cromosomas el individuo poseería 92 cromosomas por lo que no seria un ser humano. ¿Qué hacer entonces?


Para ello tiene lugar DOS divisiones celulares consecutivas, sin producirse ninguna duplicación de los cromosomas.
El comienzo de la meiosis, se inicia con la profase I donde los cromosomas homólogos se juntan e intercambian fragmentos de ADN este proceso se denominasobrecruzamiento y hacen que todos los descendientes de la misma pareja no salgan idénticos y cada una posea sus características PROPIAS ya que sino, podría decirse que tendrían clones.




Durante la meiosis I los cromosomas se separan y cada uno va a una célula hija diferente, por lo que cada uno posee información similar pero no igual.

En la meiosis II las cromátidas de cada cromosoma se separan y son repartidas entre las células hijas, concluyendo así este proceso con cuatro células haplo



TAXONOMIA



La taxonomía (del griego ταξις, taxis, "ordenamiento", y νομος, nomos, "norma" o "regla") es, en su sentido más general, la ciencia de la clasificación. Habitualmente, se emplea el término para designar a la taxonomía biológica, la ciencia de ordenar a los organismos en un sistema de clasificación compuesto por una jerarquía de taxones anidados.


Los árboles filogenéticos tienen forma de dendrogramas. Cada nodo del dendrograma se corresponde con un clado: un grupo de organismos emparentados que comparten una población ancestral común (que no necesariamente estaba compuesta de un único individuo). Los nodos terminales (aquí simbolizados por letras individuales) no pueden ir más allá de las especies, ya que por definición, por debajo de la categoría especie no se pueden formar grupos reproductivamente aislados entre sí, y por lo tanto no evolucionan como linajes independientes, por lo que no pueden ser representados por un diagrama en forma de árbol.
La Taxonomía Biológica es una subdisciplina de la Biología Sistemática, que estudia las relaciones de parentesco entre los organismos y su historia evolutiva. Actualmente, la Taxonomía actúa después de haberse resuelto el árbol filogenético de los organismos estudiados, esto es, una vez que están resueltos los clados, o ramas evolutivas, en función de las relaciones de parentesco entre ellos.
En la actualidad existe el consenso en la comunidad científica de que la clasificación debe ser enteramente consistente con lo que se sabe de la filogenia de los taxones, ya que sólo entonces dará el servicio que se espera de ella al resto de las ramas de la Biología (ver por ejemplo Soltis y Soltis 20031 ), pero hay escuelas dentro de la Biología Sistemática que definen con matices diferentes la manera en que la clasificación debe corresponderse con la filogenia conocida.

Más allá de la escuela que la defina, el fin último de la Taxonomía es organizar al árbol filogenético en un sistema de clasificación. Para ello, la escuela cladística (la que predomina hoy en día) convierte a los clados en taxones. Un taxón es un clado al que fue asignada una categoría taxonómica, al que se otorgó un nombre en latín, del que se hizo una descripción, al que se asoció a un ejemplar "tipo", y que fue publicado en una revista científica. Cuando se hace todo esto, el taxón tiene un nombre correcto ("nombre válido" en Zoología). La Nomenclatura es la subdisciplina que se ocupa de reglamentar estos pasos, y se ocupa de que se atengan a los principios de nomenclatura. Los sistemas de clasificación que nacen como resultado, funcionan como contenedores de información por un lado, y como predictores por otro.
Una vez que está terminada la clasificación de un taxón, se extraen los caracteres diagnósticos de cada uno de sus miembros, y sobre esa base se confeccionan claves dicotómicas de identificación, las cuales son utilizadas en la tarea de la determinación o identificación de organismos, que ubica a un organismo desconocido en un taxón conocido del sistema de clasificación dado. La Determinación o identificación es además la especialidad, dentro de la taxonomía, que se ocupa de los principios de elaboración de las claves dicotómicas y otros instrumentos dirigidos al mismo fin.
Las normas que regulan la creación de los sistemas de clasificación son en parte convenciones más o menos arbitrarias. Para comprender estas arbitrariedades (por ejemplo, la nomenclatura binominal de las especies y la uninominal de las categorías superiores a especie, o también la cantidad de categorías taxonómicas y los nombres de las mismas) es necesario estudiar la historia de la Taxonomía, que nos ha dejado como herencia los Códigos Internacionales de Nomenclatura a cuyas reglas técnicas deben atenerse los sistemas de clasificación.
La nueva crisis de biodiversidad, los avances en el análisis del ADN, y la posibilidad de intercambiar información a través de Internet, han dado un enorme impulso a esta ciencia en la década de 2000, y han generado un debate acerca de la necesidad de hacer reformas sustanciales a los Códigos, que aún se están discutiendo. Algunos ejemplos de nuevas propuestas son la "Taxonomía libre de rangos"




Taxonomía

La taxonomía es la disciplina biológica referida a la teoría y práctica de la clasificación de los organismos.

La sistemática es el estudio científico de las clases y diversidad de los organismos y de todas las relaciones entre ellos.

Actualmente ambas palabras se utilizan con el mismo sentido, y el objetivo inicial era el de identificar, describir y delimitar especies. Actualmente los objetivos se ampliaron en gran medida, incluyendo construir clasificaciones, reconstruir la filogenia o historia evolutiva, realizar desarrollos metodológicos y elaborar proposiciones teóricas, proveer datos para plantear hipótesis sobre el origen y evolución de los organismos, y proporcionar información para aplicar en otras áreas de la biología, e incluso en medicina, agronomía, etc.



La taxonomía se divide en 2 ramas:

•          Microtaxonomía: tiene el objetivo de identificar, describir y delimitar especies.

•          Macrotaxinomía: su finalidad es construir clasificaciones de los taxones, y requiere de la microtaxonomía.

La nomenclatura biológica es una disciplina ligada, realiza una proposición de principios generales y reglas que rigen la aplicación de nombres científicos a los taxones.

Las clasificaciones en sistemática deben ser naturales(considerar numerosos atributos) y jerárquicas. Incluye categorías taxonómicas(niveles o rangos subordinados) y taxones (un grupo de organismos considerados como unidad de cualquier rango en un sistema clasificatorio).

Los niveles jerárquicos de clasificación biológica constituyen la jerarquía linneana. Las categorías se agrupan en categoría especie, categorías infraespecíficas, y categorías supraespecíficas.





Las categorías en botánica son:

•          Reino

•          División

•          Subdivisión

•          Clase

•          Subclase

•          Orden

•          Suborden

•          Familia

•          Subfamilia

•          Tribu

•          Subtribu

•          Género

•          Subgénero

•          Sección

•          Subsección

•          Serie

•          Subserie

•          Especie

•          Subespecie

•          Variedad

•          Subvariedad

•          Forma

•          Subforma



Las categorías en zoología son:

•          Reino

•          Phylum

•          Subphylum

•          Superclase

•          Clase

•          Subclase

•          Infraclase

•          Cohorte

•          Superorden

•          Orden

•          Suborden

•          Infraorden

•          Superfamilia

•          Familia

•          Subfamilia

•          Tribu

•          Subtribu

•          Género

•          Subgénero

•          Especie

•          Subespecie



las categorías en negrita indican las categorías que son obligatorias para los respectivos códigos.



Clasificación:

•          hacia abajo: semejante a la identificación. División dicotómica de grandes grupos en otros subordinados.

•          Hacia arriba: agrupa a los organismos que comparten numerosos caracteres(=atributos que varían de una clase de organismos a otra).





Escuelas taxonómicas

1)Escuela fenética o de la taxonomía numérica

2)Escuela cladística o sistemática filogenética

3)Taxonomía evolutiva



Escuela fenética:

•          clasificación con taxones según similitud aparente o global

•          filogenia irrelevante, considera taxones mono-, para- y polifiléticos.

•          Intenta definir con precisión todos los caracteres observados, medir las similitudes o disimilitudes entre taxones y describir procedimientos para esas operaciones

•          Representación gráfica: fenograma

•          Consideran a las especies según la teoría nominalista



Escuela cladística:

•          Las clasificaciones representan el orden natural o patrón de relaciones genealógicas de taxones(reflejan filogenias)

•          Considera únicamente a los taxones monofiléticos

•          Crean algoritmos matemáticos basados en el principio de parsimonia, representados en cladogramas (representan relaciones cladísticas o de parentesco)

•          Consideran a las especies según la teoría realista



Taxonomía evolutiva:

•          Toma en cuenta tanto relaciones genealógicas como patrísticas (cantidad de cambio evolutivo acumulado respecto al antecesor)

•          Tiene en cuenta tanto taxones mono-, como los parafiléticos

•          Representación mediante árbol filogenético: cladograma donde longitud de ramas es proporcional a cantidad de cambio acumulado

•          Consideran a las especies según la teoría realista